- principal direction of curvature
- Автоматика: направление главной кривизны (поверхности)
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Curvature — In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this … Wikipedia
Principal curvature — Saddle surface with normal planes in directions of principal curvatures In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface… … Wikipedia
curvature — /kerr veuh cheuhr, choor /, n. 1. the act of curving or the state of being curved. 2. a curved condition, often abnormal: curvature of the spine. 3. the degree of curving of a line or surface. 4. Geom. a. (at a point on a curve) the derivative of … Universalium
principal axis — noun a line that passes through the center of curvature of a lens so that light is neither reflected nor refracted in a normal eye the optic axis is the direction in which objects are seen most distinctly • Syn: ↑optic axis • Hypernyms: ↑axis … Useful english dictionary
Radius of curvature (applications) — The distance from the center of a sphere or ellipsoid to its surface is its radius. The equivalent surface radius that is described by radial distances at points along the body s surface is its radius of curvature (more formally, the radius of… … Wikipedia
Menger curvature — In mathematics, the Menger curvature of a triple of points in n dimensional Euclidean space Rn is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian American mathematician Karl Menger.… … Wikipedia
Center of curvature of a curve — Center Cen ter, n. [F. centre, fr. L. centrum, fr. round which a circle is described, fr. ? to prick, goad.] 1. A point equally distant from the extremities of a line, figure, or body, or from all parts of the circumference of a circle; the… … The Collaborative International Dictionary of English
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Holonomy — Parallel transport on a sphere depends on the path. Transporting from A → N → B → A yields a vector different from the initial vector. This failure to return to the initial vector is measured by the holonomy of the connection. In differential… … Wikipedia
Darboux frame — In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non umbilic point of a surface … Wikipedia
Differential geometry of curves — This article considers only curves in Euclidean space. Most of the notions presented here have analogues for curves in Riemannian and pseudo Riemannian manifolds. For a discussion of curves in an arbitrary topological space, see the main article… … Wikipedia